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We study the hydrodynamic behavior of a one-dimensional nearest neighbor 
gradient system with respect to a positive convex potential ~. In the 
hydrodynamic limit the density distribution is shown to evolve according to the 
nonlinear diffusion equation 8pr(q)/c~t= (82/Sq2){F([1/pt(q)])}, with F =  _qs'. 
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1. I N T R O D U C T I O N  

With the aim of understanding how hydrodynamic behavior arises 
from molecular dynamics, several models have been studied rigorously, but 
only a few with deterministic dynamics (for a survey see Ref. 1, particularly 
Section 2). 

In this paper we treat the hydrodynamic limit of a one-dimensional 
nearest neighbor gradient system. 

The gradient system is the time evolution of a configuration of 
particles located at xi e R d (ie Z), given by the system of equations 

X i 
dt - y '  V ( x , - x j ) ;  i e Z  

where the force F is the negative gradient of a symmetric potential ~. 
One gets the gradient system if, in the classical Newtonian dynamics, 
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770 Mf i rmann 

the second derivative with respect to time is replaced by the first one. It is 
also related to the system of stochastic differential equations 

d x i =  2 F ( x i - x j ) d t + f 1 - 1  dwi(t); i e Z  
jeai 

with independent Wiener processes wi ( ieZ)  and inverse temperature 
//> 0. For a discussion see Lang. (z) 

The gradient system is easier to handle than the Newtonian dynamics. 
Lang (z) and Zessin (3) have studied the spatially homogeneous case, 
especially the equilibrium distributions and convergence to them. 

Our model is the finite, one-dimensional, nearest neighbor gradient 
system, given by the system of equations: 

dx~ 
~"~= ~ F(xi-xj)=--F(Xi+l-Xi)q-F(xi-xi 1); l<~i<~N 

j: [j i I -- 1 

with x~<x~+l for l<~i<<.N-1. The force F = - ~ '  is derived from a 
symmetric, positive, convex potential ~. 

As we study the finite particle case, we tacitly take the corresponding 
term for 0 if no particle to the right (resp. left) exists. 

The equation has the same form as Spitzer's model of unbounded 
spins. (4) There x~ represents the spin of a particle located at the lattice site 
i~Z. 

The hydrodynamic limit of Spitzer's model has been derived by Fritz (5) 
and Presutti and Scacciatelli, (6) but because of the different interpretation 
the assumptions for the gradient system are different. One difference con- 
sists in the interaction, which is attractive in Spitzer's model, but repulsive 
in the gradient system. 

Hydrodynamic behavior first requires the transition from microscopic 
to macroscopic scales of space and time with their ratio tending to 0. This 
kind of limit is called the hydrodynamic limit. It has to be distinguished 
from cases where in addition the dynamics is rescaled, too, such as the 
Boltzmann-Grad limit. 

For the gradient system the diffusive scaling is appropriate, i.e., for 
> 0 we set 

qi(t) = exi(a-zt) 

which evolves according to the system of equation 

dt ; l<~i<~N (1.1) 

Another difference from Spitzer's model concerns this scaling, which 
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has to be applied to the different quantities representing the location of the 
particles. 

Since the number of particles in bounded intervals is of finite order on 
the microscopic level, it diverges of the order e-  1 on the macroscopic level. 
Likewise, we take N of the order e-1. 

A further general feature of hydrodynamic behavior is the significance 
of the conserved quantities and the formation of local equilibrium. 

As (1.1) indicates, on the macroscopic level the right-hand side of the 
dynamical equations diverges as e$0. In the time derivatives of the 
distributions of the conserved quantities, however, at least formally the 
divergence cancels. Thus, one would suppose a smooth macroscopic 
behavior of them under suitable conditions. 

Furthermore, the conserved quantities parametrize the equilibrium 
distributions. Approach to equilibrium for large microscopic times in the 
spatially homogeneous case suggests the validity of local equilibrium for 
strictly positive macroscopic times. This means that in microscopic 
neighborhoods of macroscopic points the distribution of the configuration 
is approximately in equilibrium with the corresponding parameters varying 
with space and time. A precise formulation requires the limit e+0. The 
evolution equations of the local values of the conserved quantities in the 
limit are called the Euler equations of the system. 

In our model the corresponding situation is the following. Since we 
only deal with deterministic configurations, the appropriate notion of 
equilibrium for these systems is stationarity of the solution, i.e., velocity 0 
of all particles. Lang calls them rigid states. For the relation to other 
notions of equilibrium for random configurations see Lang (2) and Zessin. (3) 

As in the case of the customary gradient system, there is only one non- 
trivial conserved quantity, namely the particle number. The corresponding 
equilibrium distributions are parametrized by the density and essentially 
characterized by equidistance of the particles. In addition, there is a trivial 
conserved quantity, namely the velocity, whose total sum is 0. 

Thus, we study their local distributions, given by the measures 

P~t : e 2 (~qi(t) (1.2a) 
i 

dqi 
v~=e~vi(t)  6q~(,) with vi=-j f  (1.2b) 

i 

For a sufficiently smooth test function q) we get 

d d 
= f  ~'(q) dv~ (1.3) 

i.e., (d/dt)p~ = -(c~/~q)v~ holds in a weak sense. 
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In the next section we prove sequential compactness for these 
measures. The procedure in the next and the beginning of Section 3 is the 
same as in Ref. 7 with modifications of the estimates. In Section 3 we study 
the properties of limit distributions as e +0. We prove the existence of a 
density of these distributions and the validity of local equilibrium. It 
follows that the limit velocity distribution is a functional of the limit 
density distribution and Eq. (1.3) becomes in the limit the nonlinear dif- 
fusion equation 

8 8 2 

8 t P t ( q ) : - ~ q 2 ( F ( p ~ ) )  (1.4) 

We give a formal argument for the validity of this equation. For this 
purpose we transform (1.3): 

= ~ ~ ~~ ~)i 
i 

z 
i j: ] j - - i [  = 1 

e q)'(qi) - qo qj) F , 

with J V = { ( i , j ) : I i - - j [ = I }  

j : l j - - i ] = l  6 

Now assume that local equilibrium holds. 
Then by equidistance (q/+ 1-qi) /e  and ( q i - q i  t)/e are approximately 

1/p,(qi) and we get as ~ + 0 

d 1 - -  F 1 

We shall even derive Eq. (1.4) in a stronger sense, indicating the validity of 
local equilibrium of a higher order. 

In the final section uniqueness is proved for the initial value problem 
of Eq. (1.4). As a consequence, we get in the hydrodynamic limit the con- 
vergence of the density distribution for all times, if it converges at time 0, 
and the validity of the Euler equation (1.4) for the limit density distribution 
in a suitable weak sense. 
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2. C O M P A C T N E S S  

We first state the general assumptions, which will be made 
throughout, without further mention. 

The potential 

�9 : R \ { 0 }  R + 

is a twice continuously differentiable function with the following properties: 

1. Symmetry: qS(q)=~,(_q)  for q # 0 .  

2. Convexity: There exists 0<R~< +o% such that ~b is strictly con- 
vex on (0, R] and identically 0 on JR, + ~ ) ,  if R <  ~ ,  resp. 
decreases to 0 as q --* ~ ,  if R = + ~ .  

3. Behavior near 0: (a) ~b(q)~ +or as Iq l~0 ;  (b) there exists 
~, f i > 0  such that, for Iql sufficiently small, 

Iq" qS'(q)t ~< ~cb(q) 

I q  ~"(q)J ~</~ I~'(q)l 

The last condition prevents singularities of infinite order at 0. 
Then easily follows: 

3'. (b)There exists 7, 6 > 0 such that 

lql2.l~b"(q)l<~yqS(q)+6 for every q # 0  

In fact, we shall only need 3'b instead of 3b. 
These conditions are similar to those of Lang. (2) 
Concerning the initial configurations we assume the following: For 

each e > 0 there is a finite configuration of particles 

{q~(0);1 <~i<~U ~} c R  

with q~(0)<q~+l(0) for 1 <<.i<~N ~ -  1, such that the suitably normalized 
particle number (mass) and energy are uniformly bounded in e > 0: 

�9 N~<~M (2.1) 

(q~(0) - q,(0)) 
Z ~0 ~<E (2.2) 

( i , j )  ~ jU': 

with the system of neighbored indices 

~'~ := {(i, j): 1 <~i,j<~N~; [ i - j [  = 1} 

We study the time evolution of the configurations {q~(t); 1 ~< i<~N ~} 
for t >~ 0, given by Eq. (1.l) with F = --~' .  
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Obviously, the order of the particles is preserved in time. 
To make the formulas more lucid, we omit the explicit quotation of 

in the configurations, if this causes no confusion, keeping it in p~ and v~ 
[see (1.2)]. 

First we show that the assumptions on the initial configurations are 
preserved in time, which is only nontrivial for the boundedness of the 
energy, and that e ~ v~(t) 2 with vi= dqe/dt is uniformly bounded in ~ > O 
and t uniformly distant from 0. 

We shall make frequent use of the first and second derivatives of the 
energy, which are deduced as in the customary case, (2/ 

d e ~ q~(q~(t)-qj(t!)=_e~v(t)2<~O (2.3) 

d_te2vi(t)2=e ~ _2[vM)_vj(t)]2 F, qM) qs(t). <~0 (2.4) 
i (i ,  ])  ~ ,  +-z 

L e m m a  2.1.  

2 (i,j)~,~c 

(ii) ~ vi(t) 2 dt<~E for e > 0  
i 

a~vi(t)2<~ E for e > 0 ,  t > 0  
t 

i 

ProoL Part (i) and the first estimate of (ii) are an easy consequence 
of (2.3). 

The latter and the monotonicity of e Zivi(t) 2 imply the second 
estimate of (ii): 

i i 

The main object of our interest is the behavior of the time evolution of the 
local density distribution represented by the measures 

i 

in (1.2a) as e+0. For this purpose we also have to study the corresponding 
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behavior of the local velocity distribution represented by the signed 
measures 

i 
in (1.2b). In the sequel, we denote for convenience by measures those with 
real values, as we tacitly did it in the introduction. 

In this section we prove convergence of subsequences for these 
measures as weakly continuous functions of time as e ~ 0. 

P r o p o s i t i o n  2.2. If {p~;e>0}  is tight, t h e n f o r 0 < t 0 < T t h e s e t s  
of measures {p~; e > 0, 0 ~< t ~< T} and {v~; e > 0, to ~< t ~< T} are tight. 

ProoL By Lemma l l there holds, for C > 0, t >~ 0, 

1 ey" Iqi(t)-qi(O)l 2 g" 2 l{Iqi(t) q , ( 0 ) l ~ > C } ~ U  
i i 

=U 2 
i 

('t 2 Et 
~<~-52 e ~ tj,o vi(s)ds<.-~c 

which implies the tightness of the density distribution, if it holds for t = 0. 
The tightness of the velocity distribution follows from 

e~ Ivi(t)l l{jq~(,)l~c } 
i 

. ~1/2  . l{iqi(t)]>~C})l/2\ 

~i/ '2  
~ ( E )  l/2(~'~i l{}qi(t)l>~C}) 

T h e o r e m  2.3. Let { p ; ; e > 0 }  be tight. Then for each sequence 
e, .L 0 there exists a subsequence en(k) J, 0 such that p~,(kt converges weakly for 
each t/> 0 and v~ o~) converges weakly for each t > 0. The limit measures are 
weakly continuous in t. 

ProoL It suffices to prove the result for t e [0, T], resp. (0, T], for 
each T >  0. 

Let T >  0 be fixed and D c (0, T] be a denumerable dense subset and 
D o = D u { 0 } .  Proposition2.2 and a diagonal procedure yield for a 
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sequence en ~ 0 the existence of a subsequence e,,(k)$ 0 such that p~,~k~ and 
v~ .(~ converge weakly for t ~ D o, resp. t e D. 

We show that this subsequence satisfies the assertions of the theorem. 
For that purpose we prove the uniform continuity of ~ ~o dp~ and ~ q) dv t for 
e > 0  and t ~ [ 0 ,  T], resp. te[to,  T], for 0 < t o <  T with fixed (p6C~, the 
set of bounded, continuohsly differentiable functions with bounded 
derivative. 

Then both the convergence of the subsequence for all times and the 
weak continuity of the limit distributions easily follow in connection with 
tightness, since every corresponding limit is uniquely determined. 

We Shall frequently use the uniform norm and hence denote it without 
mark: 

II~ll := sup{lqo(q)[: q e R }  

Now let (p e C 1. Then there holds 

d d p ~  = ~ . f ~p ~ (p'Cq,Ct))v,(t) 

~ [ ~ i  q)'(qi(t))211/2I~i Ui([)2]l/2 

<~ (ME) 1/2 bl~o'll t ~/2 

from which the assertion follows for the density distribution. 
The case of the velocity distribution is more difficult. We have 

d f dv  i 
dt q) dv~ = e ~ (p'(qi(t)) Vi(t) 2 + ~ Z (P(qi(l))" d----t 

i i 
= ~ ~ q/(q,( t ) )  vi ( t )  2 

i 

e 2F'(qi(t)zeqj(t).)[vi(t)-vj(t)] + e ~ qo(q,(t)) 
i j: Ij--il ~ 1 

= e ~ q/(qi(t)) vi(t) 2 
i 
~ )~ ~o(qi(t))--~o(qj(t)) Ft (qi(l)--qj(t!)Ui(~)--UJ(t) 

The first term is easy to handle. For the second term we need property 3% 
of the potential r and (2.4): 
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l e ~ i q)(qi(t)) dvi 
�9 dt 

1 I (qi(l)--qJ(t!)2 f,(qi(t)--qJ('!) ]1/2 
(i ,  j )  e =4 re ~ 

X[~ (i,j) ~'~ o~'~ F'(qi(t)--qJ(t!) 8 

~< C I1r - ~ e  2 v,(t) 2 
i 

with C =  1(7E+ 2c~M) I/2. 
There follows for e > 0 and 0 < t < t + h: 

f q) dye+ h - f  ~o dv~ 

~"~OtH(~tt+h{[~iUi(S)2q~-CI -dZ ~ ~. Ui(S)2J j~71/2"1 ds) 
<~ rl~o'rl h + Ch 1/2 - ds ~ ~ vi(s)2 ds 

[,r I h+ ] 
which finally yields the assertion for the velocity distribution. 

Remark. The proof even shows the uniform convergence on compact 
time intervals with respect to the dual of the bounded Lipschitz norm(8): 

[[r :=sup { fqgd~ : [[CPtlBL 4 1 }  

with 

~ I CP(Q1)- ~o(q2)l } IJq~176 ~ "ql, q2611, q l # q 2  

This norm generates the weak convergence for nonnegative measures, and 
so uniform convergence holds for the density distribution. 
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3. T H E  L I M I T  D Y N A M I C S  

In this section we investigate the behavior of limit density and velocity 
distributions. 

T h e o r e m  3.1. Let e, + 0 with p~~ Or and v~ o ~ v, weakly for t >~ 0, 
resp. t > 0. Then p, is absolutely continuous with respect to the Lebesgue 
measure for t~>0 and v, is absolutely continuous with respect to p, for 
t > 0 .  

We prove the absolute continuity of p~ with an energy estimate of a 
variational principle. 

Lemma 3.2. Let a<b and N e N .  Then for a ~ X  1 < . . -  <XN+ I <~b 

2 05(Xi+l--Xi) >/N05 
i:l 

Equality holds in the case ( b - a ) / N ~ R ,  iff X~+l -X l=(b -a ) /N  for 
1 <~i<~N, and in the case (b -a ) /N>R,  iffxi+l--xi>~R for l<<.i<~N. 

Proof. By the convexity of 05 there follows for fixed xl < XN+~ 

05(xi+ 1 - x i )  > /N05 
i = 1  

and the right side is minimal for maximal XN+I--Xl, i.e., for x l=a  , 
XN+I=b. 

The assertion concerning the equality is a consequence of the strict 
convexity. 

Proof of Theorem 3.1. For simplicity we omit the index n for asser- 
tions that hold for every e > 0. 

Let t~>0 be fixed and I c R  he an interval with length 1I] such that 
p t ( 6 I ) - 0 .  We denote by N~(I)= #{i:q~(t)~I}. Since 05 is nonnegative, 
there follows from Lemma 3.1 

( ) E>>.e ~ 05 qi+~__--qi > ~ [ N ~ ( I ) _ l ] 0 5 \ N _ _ ~ 2  1 
i:ql,qi+l~I 

With enN~~ p,(I) this yields 

I I/I 
~<E 
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which can easily be extended to hold for every interval I c R  by 
approximation. 

Now let 11,..., Im be disjoint intervals. Then there follows by a similar 
argument as in the proof of Lemma 3.2 

j ~ l  i:qi,qi+lElj 

/ I/jl ) 
j = l  

~_s=~ \Z)=~ p,(Ij)J 

The function p~(z/p) is increasing in p ) 0  and decreasing in r ~>0 with 
pqb(r/p)~ oo as ~ 0  with p > 0  fixed. 

Hence for each r/> 0 there exists 6 > 0 such that 

p,(/ j )  ~< r/ for ~, IIjl <~ 6 
j = l  j = l  

The absolute continuity of v, with respect to p, follows from the estimate 

I q 1/2 F q 1/2 
~'i lc(qi(t))Iv,(t)l ~< e~.. ,c~,~,~j L = 

We shall identify the measure p, with its density and denote the 
density of v, with respect to p, by u,. 

Theorem 3.3. Under the assumptions of Theorem 3.1 for each 
t > 0  the function F(1/p,) is absolutely continuous--and in that way 
uniquely defined--and the relation 

holds for a.e. q with respect to the Lebesgue measure. 

C o r o l l a r y  3.4. Under the assumptions of Theorem 3.1 the limit 
density distribution p, (t ~> 0) satisfies the equation 

(~ ~2 

822/48/3-4-27 
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in the weak sense 

dt f ~o(q) p,(q) dq= - f ~o'(q) V ~ dq 

Proof. For  a < b  there holds 

v~([a,  b))  = ~ Y~ 1 Ec~,b~(qi(t)) vi(t) 
i 

Mt3rmann 

for ~0eC~; t > 0  

For  e > 0, t > 0 we define the function 

r~(q)=q~+l(t)-q~(t) with q~(t)<q-.~qi+l(t);-< ~ q~R 

setting r~(q) = oe if no such i exists. 
Then we have 

v~([a, b ) ) =  -F(r~(b))+F(r~(a)) for a<b (3.1) 

with the convent ion F( + oe) = 0. 
Since v~ n ~ vt weakly, there follows for a = - 0 %  b = q, that  there exists 

l~,(q) :=  lim F(r~"(q)) = - v , ( ( -  or, q)) (3.2) 
/ 1 ~  o 0  

and by Theorem 3.1 there holds 

Ft(b ) -  F,(a) = - ut(q) Pt(q) dq for a < b 

Hence, 1P, is absolutely Continuous with 

~-~ [~t(q) = -ut(q) Pt(q) 

for a.e. q with respect to the Lebesgue measure. 
It remains to show 

F t ( q ) - - F  P t ~  " t > O ,  q ~ R  (3.3) 

For  this purpose we need the validity of local equilibrium, which is of 
interest in itself. 
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P r o p o s i t i o n  3.5. Let t > 0 .  In the domain {q:F(1/[p,(q)])>O} 
the function Pt is absolutely continuous, too, and for each q ~ R  with 
F(1/[pt(q)]) > 0 and r/> 0 there exists ~o > 0, c5 > 0 with 

~n 
qi+l(t)-q~.(t) 1 ~<q for O<en<eo ,  Iq~"(t)-ql <~6 

e p,-(q) 

For each q ~ R  with F(1/[p,(q)])=O and t / > 0  there exists e0>0, 6 > 0  
with 

q~%,(t)-q~.(t)~ 
~ t ~ - ~  for O<s~<eo,  Iq~~ 

8 

ProoL We first prove this proposition for F, instead of F(1/p,) and 
then show (3.3). The crucial estimate is the following: For a<<.q' <q"<~b 
there holds 

I F(r~(q")) - F(r~(q'))l 

(3.4) 

Now let q ~ R be fixed. Since 

en~lE,,b~(qi(t))~p,([a,b)) as en$0 
i 

and 

p,([q-6, q+6))~O as 650 

there follows from (3.4): For each 17 > 0 there exists c5 > 0, e 0 > 0 with 

IF(r~(q'))-F(r~"(q))l<~rl for 0 < e n < e o ,  Iq'-ql<~6 (3.5) 

First we consider the case [7t(q)>0. Then by (3.2) and (3.5) there exist 
e '>0 ,  ~ ' > 0  with 

F(r~"(q'))>~�89 for O<e .< So ,  Iq'-qt<~6 
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Under these conditions we can invert the function F with the inverse 
function having bounded derivative. Again by (3.2) and (3.5) there follows: 

r~n(q')~r,(q')=F l([;(rt(q')) as ~,~0 

and r, is absolutely continuous for jq' - q[ ~< 6'. 
Furthermore, for each r/> 0 there exist t0 > 0, 6 > 0 with 

Ir~"(q')-r~"(q)l~r//2 for 0 < e n < e o ,  I q ' - q l < ~  
(3.6) 

[r~(q)-r,(q)[ ~<t//2 for O < e , < e  o 

We get a lower, resp. upper, bound of the number of particles in [a, b) by 
estimating the distance of neighbored particles. We have 

p~"([a,b))=en~lEa.b)(qi(t))>~ s u p (  ~2 �9 a<~q~<b ( b - a )  
i 

Now fix q > 0 and let 6 > 0 as in (3.6). There easily follows with e~ + 0 

p,(q')>>. [ r , (q ' )+r / ]  ~ for ]q'-q[ <~ 

and similarly 

Consequently, 

p,(q')<~[r,(q')-rl] ' for I q ' - q ] ~ 6  

p~(q) = ]-r,(q)] -1 

which finishes the proof of this case in combination with (3.6). 
In the case l~,(q)=0 we cannot invert F, and p~(q) may not be 

uniquely defined, but similarly to the preceding reasoning we get the 
following: For each t/> 0 there exist t0 > 0, ~ > 0 with 

r~.(q')>~R--r I for 0 < e n < e o ,  Iq'-ql  <~6 

p,(q')<~(R-tl) -1 for a.e.q'withlq'-ql<~6 

Though p, may not be uniquely defined, we get 

( 1 ) = 0  F , ( q ) = F  ~ on the set {q: F ' , (q)=0} 

If we choose such a version of Or, that F(1/p,) is absolutely continuous. 
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Proof of Corollary 3.4. We start from the integrated version of (1.3): 

q) e C~, t~>0 

The estimate (2.5) permits us to interchange the limit v~,~ vs (0 <s~< t) 
with the integration. Finally, we differentiate with respect to time and get 
the desired result. 

Romark. The fact that Eq. (1.4) holds in the sense stated in Corollary 
3.4 compared with the weaker version formally derived in the introduction 
suggests that within the range of the potential not only does the distance of 
the particles become locally constant in the limit, but that this also holds 
for the properly rescaled change of these distances, which means local 
equilibrium of a higher order. 

4. UNIQUENESS 

We are now ready to prove our main result. 

T h e o r e m  4.1. Let p;  ~ Po as e$ 0 with bounded density Po. Then 
for each t ~> 0 there exists p, with p~ --* p~ weakly as e $ 0. Now, p, is weakly 
continuous in t >~ 0, has a density with respect to the Lebesgue measure, 
and satisfies the differential equation 

c?t = ~?q---5 F 

in the weak sense 

dt f q~(q) p,(q) dq:  - f -~q F p - ~  .cp'(q) dq for q0eC~, t > 0  

After the results of the preceding sections it remains to prove that 
every limit Pt, vt (t >~ 0, resp. t > 0) of a convergent sequence p~,, v~ o is uni- 
quely determined as a solution of an initial value problem of the differential 
equation in the stated version. 

We use the methods of Alt and Luckhaus, (9) who study similar dif- 
ferential equations. Their results, however, are not directly applicable, since 
their primary function corresponds to (~/Oq){F([ 1/pt(q)]) }, which is not 
invertible if R < or. But their methods can be transferred almost literally. 
The main task is to verify that the assumptions of Ref. 9 hold in our case. 
For that purpose we have to extend the validity of the differential equation 
to appropriate functions, which also depend on time. 
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We use the customary denotation of H n'p (n >~ 0 integer, p >_-1 real) 
with specified domain as the Sobolev space of functions with generalized 
derivative up to order n in L p. All L p and H n'p spaces refer to the Lebesgue 
measure. 

JE = J/[(R) is the space of finite Borel measures on R with the total 
variation norm Ihpllv := I#l (R). The space Jr the dual of Co(R), the set 
of continuous functions on R, which vanish at infinity, with the uniform 
norm I['ll (see Section 2). 

We denote the dual of a Banach space E by E*. 
Now let ~, ~ 0 with p~~ ~ p, and vt o --, v t weakly for t >_- 0, resp. t > 0. 
For fixed T >  0 we conceive ~?p,fi?t as a functional, defined by 

<P,, ot / dt:=lim <p,(q)P,+h(q)-Pt(q) h~o h dq dt 

on spaces of suitable test functions ~0 for which this limit exists. 

and 

Lemma 4.2, Let T>O. Then: 

(i) p.~L~([-0,  T];L~(R))  

-/o [ P , ( q ) -  Po(q)] dq} 

holds for 

q~ ~ L2([0, T]; HI'Z(R)) ~ HI'I([0, T]; L~(R))  

(ii) ~qq F eL2([0,  T] x R )  

(iii) -~t'~ (L2([0, T]; H~'2(R))) * 

with 

with 

- - ~ 3 q ~  ( F  (ptT~)))  dq ] 
T~ ap,\ f ~ I f  Oq>,(q) fo k~P"-fft-/ d r = -  " Oq 

for ~p e L2([0, T]; H~'2(R)). 

dt 

~or-O 

dt 

Proof. (i) For t />0 there holds 

lip,l[ L,(a) = p,(R) 4 m 

and the weak continuity implies the measurability in dependence on t. 
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The validity of the stated equation follows from this by 
straightforward manipulations of the integral in the definition of c2pjdt [see 
(1.4.1) of Ref. 9]. 

(ii) We conceive v. ~~ and v. as elements of L2([0, T]; Jg). Then 

i 

Since v~"~v,  weakly as e,.L0 for 0<t~< T, there follows [see, e.g., 
Theorem (13.44) of Ref. 10] 

as s.~10 

for ~p ~ L2([0, T]; C0(R)). 
We need an L 2 estimate for the limit velocity distribution also with 

respect to the space variable, which we obtain from 

L O  i i 

i 

for ~p ffL2([0, T]; Co(R)) , which becomes in the limit 

At this point we need the boundedness of P0, which implies the same 
bound for p, (t >~ 0) by the maximum principle applied to Eq. (1.4). Since v, 
has the density 



786 MOrmann 

there exists a constant C > 0 with 

Since L2([0, T]; Co(R)) is dense in L2([0, T]; L2(R)), there follows 

1 

(iii) Let ~oeL2([0, T]; C~). For fixed t > 0  we apply the differential 
equation of Corollary 3.4, resp. Theorem 4.1, to qo, and get 

lim f ~o,(q) Pt+h(q) - o,(q) dq h~o h 

df  dqs =--~s q~ Ps(q) 
= t  

By the estimates used in part (ii) of the proof one similarly shows that the 
limit h$0 can be interchanged with the integration with respect to time, 
yielding 

f: I ~pt'Op'\dt:ot / -f:If~q~t(q~) 3 (F(p~)))dql Oq 

for ~0 ~ L2([-0, T]; C~), which can be extended to hold for 
(p ~L2([0, T]; HI'2(R)). We finally prove the uniqueness of the solution of 
the differential equation in the version of Lemma4.2, from which 
Theorem 4.1 follows, as already mentioned. 

P r o p o s i t i o n  4.:3. There is at most one p satisfying the properties 
of Lemma 4.2 with given P0. 

Proof. We proceed as in the proof of Theorem 2.4 of Ref. 9 and only 
sketch the main steps. Let p~, /92 s L2([-0, T]; LI(R)) be two solutions and 
set p = p~ - P2. Then there exists ~ E L2([0, T]; H~'2(R)) with 

for ~p E L2([0, T]; H~'2(R)). 
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There follows for h > 0, by the same manipulations of the integral as in 
Ref. 9, with the use of (4.1), 

h \ ---h 

With h + 0 there follows 

T/0p, } 1 

If ~ is inserted into Lemma 4.2(iii), this becomes 

which is ~<0 by the monotonicity of F. Since �89 [~'T(q)]2dq>/O, both 
expressions have to be 0. Hence 

F ~ - F  ~1 a.e. on[0,  T ] x R  

and thus O0]~?t=-O on L2([O,T];HI'2(R)) by Lemma4.2(iii). From 
Lemma 4.2(i) we finally obtain p---0. 
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